Lemma 21.31.12. With X \in \mathop{\mathrm{Ob}}\nolimits (\textit{LC}_{qc}) and a_ X : \mathop{\mathit{Sh}}\nolimits (\textit{LC}_{qc}/X) \to \mathop{\mathit{Sh}}\nolimits (X) as above:
for an abelian sheaf \mathcal{F} on X we have H^ n(X, \mathcal{F}) = H^ n_{qc}(X, a_ X^{-1}\mathcal{F}),
for K \in D^+(X) we have H^ n(X, K) = H^ n_{qc}(X, a_ X^{-1}K).
For example, if A is an abelian group, then we have H^ n(X, \underline{A}) = H^ n_{qc}(X, \underline{A}).
Comments (0)