Lemma 15.10.2. Let $(A, I)$ be a Zariski pair. Then the map from idempotents of $A$ to idempotents of $A/I$ is injective.
Proof. An idempotent of a local ring is either $0$ or $1$. Thus an idempotent is determined by the set of maximal ideals where it vanishes, by Algebra, Lemma 10.23.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)