Lemma 15.11.7. Let $A$ be a ring. Let $I, J \subset A$ be ideals with $V(I) = V(J)$. Then $(A, I)$ is henselian if and only if $(A, J)$ is henselian.

**Proof.**
For any integral ring map $A \to B$ we see that $V(IB) = V(JB)$. Hence idempotents of $B/IB$ and $B/JB$ are in bijective correspondence (Algebra, Lemma 10.21.3). It follows that $B \to B/IB$ induces a bijection on sets of idempotents if and only if $B \to B/JB$ induces a bijection on sets of idempotents. Thus we conclude by Lemma 15.11.6.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: