Lemma 29.49.9. Let $X$ and $Y$ be schemes. Assume $X$ reduced and $Y$ separated. Let $\varphi $ be a rational map from $X$ to $Y$ with domain of definition $U \subset X$. Then there exists a unique morphism $f : U \to Y$ representing $\varphi $. If $X$ and $Y$ are schemes over a separated scheme $S$ and if $\varphi $ is an $S$-rational map, then $f$ is a morphism over $S$.
Proof. Let $(V, g)$ and $(V', g')$ be representatives of $\varphi $. Then $g, g'$ agree on a dense open subscheme $W \subset V \cap V'$. On the other hand, the equalizer $E$ of $g|_{V \cap V'}$ and $g'|_{V \cap V'}$ is a closed subscheme of $V \cap V'$ (Schemes, Lemma 26.21.5). Now $W \subset E$ implies that $E = V \cap V'$ set theoretically. As $V \cap V'$ is reduced we conclude $E = V \cap V'$ scheme theoretically, i.e., $g|_{V \cap V'} = g'|_{V \cap V'}$. It follows that we can glue the representatives $g : V \to Y$ of $\varphi $ to a morphism $f : U \to Y$, see Schemes, Lemma 26.14.1. We omit the proof of the final statement. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)