The Stacks project

Lemma 59.79.5. Let $X$ be a scheme. Let $Z \subset X$ be a closed subscheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module and denote $\mathcal{F}^ a$ the associated quasi-coherent sheaf on the small étale site of $X$ (Proposition 59.17.1). Then

  1. $H^ q_ Z(X, \mathcal{F})$ agrees with $H^ q_ Z(X_{\acute{e}tale}, \mathcal{F}^ a)$,

  2. if the complement of $Z$ is retrocompact in $X$, then $i_*\mathcal{H}^ q_ Z(\mathcal{F}^ a)$ is a quasi-coherent sheaf of $\mathcal{O}_ X$-modules equal to $(i_*\mathcal{H}^ q_ Z(\mathcal{F}))^ a$.

Proof. Let $j : U \to X$ be the inclusion of the complement of $Z$. The statement (1) on cohomology groups follows from the long exact sequences for cohomology with supports and the agreements $H^ q(X_{\acute{e}tale}, \mathcal{F}^ a) = H^ q(X, \mathcal{F})$ and $H^ q(U_{\acute{e}tale}, \mathcal{F}^ a) = H^ q(U, \mathcal{F})$, see Theorem 59.22.4. If $j : U \to X$ is a quasi-compact morphism, i.e., if $U \subset X$ is retrocompact, then $R^ qj_*$ transforms quasi-coherent sheaves into quasi-coherent sheaves (Cohomology of Schemes, Lemma 30.4.5) and commutes with taking associated sheaf on étale sites (Descent, Lemma 35.9.5). We conclude by applying Lemma 59.79.3. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 59.79: Cohomology with support in a closed subscheme

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A46. Beware of the difference between the letter 'O' and the digit '0'.