The Stacks project

Lemma 65.15.2. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. The topological space $|X|$ is a spectral space.

Proof. By Topology, Definition 5.23.1 we have to check that $|X|$ is sober, quasi-compact, has a basis of quasi-compact opens, and the intersection of any two quasi-compact opens is quasi-compact. By Lemma 65.15.1 we see that $|X|$ is sober. By Lemma 65.5.2 we see that $|X|$ is quasi-compact. By Lemma 65.6.3 there exists an affine scheme $U$ and a surjective ├ętale morphism $f : U \to X$. Since $|f| : |U| \to |X|$ is open and continuous and since $|U|$ has a basis of quasi-compact opens, we conclude that $|X|$ has a basis of quasi-compact opens. Finally, suppose that $A, B \subset |X|$ are quasi-compact open. Then $A = |X'|$ and $B = |X''|$ for some open subspaces $X', X'' \subset X$ (Lemma 65.4.8) and we can choose affine schemes $V$ and $W$ and surjective ├ętale morphisms $V \to X'$ and $W \to X''$ (Lemma 65.6.3). Then $A \cap B$ is the image of $|V \times _ X W| \to |X|$ (Lemma 65.4.3). Since $V \times _ X W$ is quasi-compact as $X$ is quasi-separated (Lemma 65.3.3) we conclude that $A \cap B$ is quasi-compact and the proof is finished. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A4G. Beware of the difference between the letter 'O' and the digit '0'.