Lemma 15.73.3. Let $R$ be a ring. Let $K, L, M$ be objects of $D(R)$. There is a canonical morphism

$R\mathop{\mathrm{Hom}}\nolimits _ R(L, M) \otimes _ R^\mathbf {L} K \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ R(R\mathop{\mathrm{Hom}}\nolimits _ R(K, L), M)$

in $D(R)$ functorial in $K, L, M$.

Proof. Choose a K-injective complex $I^\bullet$ representing $M$, a K-injective complex $J^\bullet$ representing $L$, and a K-flat complex $K^\bullet$ representing $K$. The map is defined using the map

$\text{Tot}(\mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet ) \otimes _ R K^\bullet ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet ), I^\bullet )$

of Lemma 15.71.6. We omit the proof that this is functorial in all three objects of $D(R)$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).