Lemma 15.73.4. Let $R$ be a ring. Given $K, L, M$ in $D(R)$ there is a canonical morphism

$R\mathop{\mathrm{Hom}}\nolimits _ R(L, M) \otimes _ R^\mathbf {L} R\mathop{\mathrm{Hom}}\nolimits _ R(K, L) \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ R(K, M)$

in $D(R)$ functorial in $K, L, M$.

Proof. Choose a K-injective complex $I^\bullet$ representing $M$, a K-injective complex $J^\bullet$ representing $L$, and any complex of $R$-modules $K^\bullet$ representing $K$. By Lemma 15.71.3 there is a map of complexes

$\text{Tot}\left( \mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet ) \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet ) \right) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , I^\bullet )$

The complexes of $R$-modules $\mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet )$, $\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet )$, and $\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , I^\bullet )$ represent $R\mathop{\mathrm{Hom}}\nolimits _ R(L, M)$, $R\mathop{\mathrm{Hom}}\nolimits _ R(K, L)$, and $R\mathop{\mathrm{Hom}}\nolimits _ R(K, M)$. If we choose a K-flat complex $H^\bullet$ and a quasi-isomorphism $H^\bullet \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet )$, then there is a map

$\text{Tot}\left( \mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet ) \otimes _ R H^\bullet \right) \longrightarrow \text{Tot}\left( \mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet ) \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet ) \right)$

whose source represents $R\mathop{\mathrm{Hom}}\nolimits _ R(L, M) \otimes _ R^\mathbf {L} R\mathop{\mathrm{Hom}}\nolimits _ R(K, L)$. Composing the two displayed arrows gives the desired map. We omit the proof that the construction is functorial. $\square$

There are also:

• 2 comment(s) on Section 15.73: Derived hom

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).