Lemma 15.68.5. Let $R$ be a ring. Given complexes $K, L, M$ in $D(R)$ there is a canonical morphism

$K \otimes _ R^\mathbf {L} R\mathop{\mathrm{Hom}}\nolimits _ R(M, L) \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ R(M, K \otimes _ R^\mathbf {L} L)$

in $D(R)$ functorial in $K$, $L$, $M$.

Proof. Choose a K-flat complex $K^\bullet$ representing $K$, and a K-injective complex $I^\bullet$ representing $L$, and choose any complex $M^\bullet$ representing $M$. Choose a quasi-isomorphism $\text{Tot}(K^\bullet \otimes _ R I^\bullet ) \to J^\bullet$ where $J^\bullet$ is K-injective. Then we use the map

$\text{Tot}\left( K^\bullet \otimes _ R \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , I^\bullet ) \right) \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , \text{Tot}(K^\bullet \otimes _ R I^\bullet )) \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , J^\bullet )$

where the first map is the map from Lemma 15.67.5. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).