Lemma 15.73.6. Let $R$ be a ring. Given complexes $K, L$ in $D(R)$ there is a canonical morphism

$K \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ R(L, K \otimes _ R^\mathbf {L} L)$

in $D(R)$ functorial in both $K$ and $L$.

Proof. This is a special case of Lemma 15.73.5 but we will also prove it directly. Choose a K-flat complex $K^\bullet$ representing $K$ and any complex $L^\bullet$ representing $L$. Choose a quasi-isomorphism $\text{Tot}(K^\bullet \otimes _ R L^\bullet ) \to J^\bullet$ where $J^\bullet$ is K-injective. Then we use the map

$K^\bullet \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , \text{Tot}(K^\bullet \otimes _ R L^\bullet )) \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (L^\bullet , J^\bullet )$

where the first map is the map from Lemma 15.71.5. $\square$

There are also:

• 2 comment(s) on Section 15.73: Derived hom

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).