Lemma 15.88.1. Let $R$ be a ring. Let $K, L, M$ be objects of $D(R)$. the map

of Lemma 15.68.3 is an isomorphism in the following two cases

$K$ perfect, or

$K$ is pseudo-coherent, $L \in D^+(R)$, and $M$ finite injective dimension.

Lemma 15.88.1. Let $R$ be a ring. Let $K, L, M$ be objects of $D(R)$. the map

\[ R\mathop{\mathrm{Hom}}\nolimits _ R(L, M) \otimes _ R^\mathbf {L} K \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ R(R\mathop{\mathrm{Hom}}\nolimits _ R(K, L), M) \]

of Lemma 15.68.3 is an isomorphism in the following two cases

$K$ perfect, or

$K$ is pseudo-coherent, $L \in D^+(R)$, and $M$ finite injective dimension.

**Proof.**
Choose a K-injective complex $I^\bullet $ representing $M$, a K-injective complex $J^\bullet $ representing $L$, and a bounded above complex of finite projective modules $K^\bullet $ representing $K$. Consider the map of complexes

\[ \text{Tot}(\mathop{\mathrm{Hom}}\nolimits ^\bullet (J^\bullet , I^\bullet ) \otimes _ R K^\bullet ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (\mathop{\mathrm{Hom}}\nolimits ^\bullet (K^\bullet , J^\bullet ), I^\bullet ) \]

of Lemma 15.67.3. Note that

\[ \left(\prod \nolimits _{p + r = t} \mathop{\mathrm{Hom}}\nolimits _ R(J^{-r}, I^ p)\right) \otimes _ R K^ s = \prod \nolimits _{p + r = t} \mathop{\mathrm{Hom}}\nolimits _ R(J^{-r}, I^ p) \otimes _ R K^ s \]

because $K^ s$ is finite projective. The map is given by the maps

\[ c_{p, r, s} : \mathop{\mathrm{Hom}}\nolimits _ R(J^{-r}, I^ p) \otimes _ R K^ s \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ R(\mathop{\mathrm{Hom}}\nolimits _ R(K^ s, J^{-r}), I^ p) \]

which are isomorphisms as $K^ s$ is finite projective. For every element $\alpha = (\alpha ^{p, r, s})$ of degree $n$ of the left hand side, there are only finitely many values of $s$ such that $\alpha ^{p, r, s}$ is nonzero (for some $p, r$ with $n = p + r + s$). Hence our map is an isomorphism if the same vanishing condition is forced on the elements $\beta = (\beta ^{p, r, s})$ of the right hand side. If $K^\bullet $ is a bounded complex of finite projective modules, this is clear. On the other hand, if we can choose $I^\bullet $ bounded and $J^\bullet $ bounded below, then $\beta ^{p, r, s}$ is zero for $p$ outside a fixed range, for $s \gg 0$, and for $r \gg 0$. Hence among solutions of $n = p + r + s$ with $\beta ^{p, r, s}$ nonzero only a finite number of $s$ values occur. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)