The Stacks project

Lemma 47.3.10. Let $A$ be a Noetherian ring. Let $E$ be an injective $A$-module. Then $E \otimes _ A A[x]$ has injective-amplitude $[0, 1]$ as an object of $D(A[x])$. In particular, $E \otimes _ A A[x]$ has finite injective dimension as an $A[x]$-module.

Proof. Let us write $E[x] = E \otimes _ A A[x]$. Consider the short exact sequence of $A[x]$-modules

\[ 0 \to E[x] \to \mathop{\mathrm{Hom}}\nolimits _ A(A[x], E[x]) \to \mathop{\mathrm{Hom}}\nolimits _ A(A[x], E[x]) \to 0 \]

where the first map sends $p \in E[x]$ to $f \mapsto fp$ and the second map sends $\varphi $ to $f \mapsto \varphi (xf) - x\varphi (f)$. The second map is surjective because $\mathop{\mathrm{Hom}}\nolimits _ A(A[x], E[x]) = \prod _{n \geq 0} E[x]$ as an abelian group and the map sends $(e_ n)$ to $(e_{n + 1} - xe_ n)$ which is surjective. As an $A$-module we have $E[x] \cong \bigoplus _{n \geq 0} E$ which is injective by Lemma 47.3.7. Hence the $A[x]$-module $\mathop{\mathrm{Hom}}\nolimits _ A(A[x], E[x])$ is injective by Lemma 47.3.4 and the proof is complete. $\square$


Comments (2)

Comment #4674 by Bogdan on

A typo, the sentence "Hence the -module is injective" should read "Hence the -module is injective".

There are also:

  • 2 comment(s) on Section 47.3: Injective modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A6J. Beware of the difference between the letter 'O' and the digit '0'.