Lemma 47.15.3. Let A be a Noetherian ring. If \omega _ A^\bullet is a dualizing complex, then the functor
D : K \longmapsto R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet )
is an anti-equivalence D_{\textit{Coh}}(A) \to D_{\textit{Coh}}(A) which exchanges D^+_{\textit{Coh}}(A) and D^-_{\textit{Coh}}(A) and induces an anti-equivalence D^ b_{\textit{Coh}}(A) \to D^ b_{\textit{Coh}}(A). Moreover D \circ D is isomorphic to the identity functor.
Proof.
Let K be an object of D_{\textit{Coh}}(A). From Lemma 47.15.2 we see R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet ) is an object of D_{\textit{Coh}}(A). By More on Algebra, Lemma 15.98.2 and the assumptions on the dualizing complex we obtain a canonical isomorphism
K = R\mathop{\mathrm{Hom}}\nolimits _ A(\omega _ A^\bullet , \omega _ A^\bullet ) \otimes _ A^\mathbf {L} K \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ A(R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet ), \omega _ A^\bullet )
Thus our functor has a quasi-inverse and the proof is complete.
\square
Comments (5)
Comment #3623 by Janos Kollar on
Comment #3726 by Johan on
Comment #8374 by Haohao Liu on
Comment #8376 by Nicolás on
Comment #8980 by Stacks project on
There are also: