Lemma 47.15.3. Let $A$ be a Noetherian ring. If $\omega _ A^\bullet $ is a dualizing complex, then the functor

\[ D : K \longmapsto R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet ) \]

is an anti-equivalence $D_{\textit{Coh}}(A) \to D_{\textit{Coh}}(A)$ which exchanges $D^+_{\textit{Coh}}(A)$ and $D^-_{\textit{Coh}}(A)$ and induces an anti-equivalence $D^ b_{\textit{Coh}}(A) \to D^ b_{\textit{Coh}}(A)$. Moreover $D \circ D$ is isomorphic to the identity functor.

**Proof.**
Let $K$ be an object of $D_{\textit{Coh}}(A)$. From Lemma 47.15.2 we see $R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet )$ is an object of $D_{\textit{Coh}}(A)$. By More on Algebra, Lemma 15.97.2 and the assumptions on the dualizing complex we obtain a canonical isomorphism

\[ K = R\mathop{\mathrm{Hom}}\nolimits _ A(\omega _ A^\bullet , \omega _ A^\bullet ) \otimes _ A^\mathbf {L} K \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ A(R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet ), \omega _ A^\bullet ) \]

Thus our functor has a quasi-inverse and the proof is complete.
$\square$

## Comments (2)

Comment #3623 by Janos Kollar on

Comment #3726 by Johan on

There are also: