Lemma 47.15.3. Let $A$ be a Noetherian ring. If $\omega _ A^\bullet$ is a dualizing complex, then the functor

$D : K \longmapsto R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet )$

is an anti-equivalence $D_{\textit{Coh}}(A) \to D_{\textit{Coh}}(A)$ which exchanges $D^+_{\textit{Coh}}(A)$ and $D^-_{\textit{Coh}}(A)$ and induces an anti-equivalence $D^ b_{\textit{Coh}}(A) \to D^ b_{\textit{Coh}}(A)$. Moreover $D \circ D$ is isomorphic to the identity functor.

Proof. Let $K$ be an object of $D_{\textit{Coh}}(A)$. From Lemma 47.15.2 we see $R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet )$ is an object of $D_{\textit{Coh}}(A)$. By More on Algebra, Lemma 15.97.2 and the assumptions on the dualizing complex we obtain a canonical isomorphism

$K = R\mathop{\mathrm{Hom}}\nolimits _ A(\omega _ A^\bullet , \omega _ A^\bullet ) \otimes _ A^\mathbf {L} K \longrightarrow R\mathop{\mathrm{Hom}}\nolimits _ A(R\mathop{\mathrm{Hom}}\nolimits _ A(K, \omega _ A^\bullet ), \omega _ A^\bullet )$

Thus our functor has a quasi-inverse and the proof is complete. $\square$

Comment #3623 by Janos Kollar on

A small remark, but if you say "anti-equivalence" in line 3 then probably should do the same in line 4.

There are also:

• 2 comment(s) on Section 47.15: Dualizing complexes

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).