The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

15.66 Injective dimension

This section is the dual of the section on projective dimension.

Definition 15.66.1. Let $R$ be a ring. Let $K$ be an object of $D(R)$. We say $K$ has finite injective dimension if $K$ can be represented by a finite complex of injective $R$-modules. We say $K$ has injective-amplitude in $[a, b]$ if $K$ is isomorphic to a complex

\[ \ldots \to 0 \to I^ a \to I^{a + 1} \to \ldots \to I^{b - 1} \to I^ b \to 0 \to \ldots \]

with $I^ i$ an injective $R$-module for all $i \in \mathbf{Z}$.

Clearly, $K$ has bounded injective dimension if and only if $K$ has injective-amplitude in $[a, b]$ for some $a, b \in \mathbf{Z}$. Furthermore, if $K$ has bounded injective dimension, then $K$ is bounded. Here is the obligatory lemma.

Lemma 15.66.2. Let $R$ be a ring. Let $K$ be an object of $D(R)$. Let $a, b \in \mathbf{Z}$. The following are equivalent

  1. $K$ has injective-amplitude in $[a, b]$,

  2. $\mathop{\mathrm{Ext}}\nolimits ^ i_ R(N, K) = 0$ for all $R$-modules $N$ and all $i \not\in [a, b]$,

  3. $\mathop{\mathrm{Ext}}\nolimits ^ i(R/I, K) = 0$ for all ideals $I \subset R$ and all $i \not\in [a, b]$.

Proof. Assume (1). We may assume $K$ is the complex

\[ \ldots \to 0 \to I^ a \to I^{a + 1} \to \ldots \to I^{b - 1} \to I^ b \to 0 \to \ldots \]

where $P^ i$ is a injective $R$-module for all $i \in \mathbf{Z}$. In this case we can compute the ext groups by the complex

\[ \ldots \to 0 \to \mathop{\mathrm{Hom}}\nolimits _ R(N, I^ a) \to \ldots \to \mathop{\mathrm{Hom}}\nolimits _ R(N, I^ b) \to 0 \to \ldots \]

and we obtain (2). It is clear that (2) implies (3).

Assume (3) holds. Choose a nonzero map $R \to H^ n(K)$. Since $\mathop{\mathrm{Hom}}\nolimits _ R(R, -)$ is an exact functor, we see that $\mathop{\mathrm{Ext}}\nolimits ^ n_ R(R, K) = \mathop{\mathrm{Hom}}\nolimits _ R(R, H^ n(K)) = H^ n(K)$. We conclude that $H^ n(K)$ is zero for $n \not\in [a, b]$. In particular, $K$ is bounded below and we can choose a quasi-isomorphism

\[ K \to I^\bullet \]

with $I^ i$ injective for all $i \in \mathbf{Z}$ and $I^ i = 0$ for $i < a$. See Derived Categories, Lemma 13.16.4. Let $J = \mathop{\mathrm{Ker}}(I^ b \to I^{b + 1})$. Then $K$ is quasi-isomorphic to the complex

\[ \ldots \to 0 \to I^ a \to \ldots \to I^{b - 1} \to J \to 0 \to \ldots \]

Denote $K' = (I^ a \to \ldots \to I^{b - 1})$ the corresponding object of $D(R)$. We obtain a distinguished triangle

\[ J[-b] \to K \to K' \to J[1 - b] \]

in $D(R)$. Thus for every ideal $I \subset R$ an exact sequence

\[ \mathop{\mathrm{Ext}}\nolimits ^ b(R/I, K') \to \text{Ext}^1(R/I, J) \to \text{Ext}^{1 + b}(R/I, K) \]

By assumption the term on the right vanishes. By the implication (1) $\Rightarrow $ (2) the term on the left vanishes. Thus $J$ is a injective $R$-module by Lemma 15.54.4. $\square$

Example 15.66.3. Let $R$ be a Dedekind domain. Then every nonzero ideal $I$ is a finite projective module, see Lemma 15.22.11. Thus $R/I$ has projective dimension $1$. Hence every $R$-module $M$ has injective dimension $\leq 1$ by Lemma 15.66.2. Thus $\mathop{\mathrm{Ext}}\nolimits ^ i_ R(M, N) = 0$ for $i \geq 2$ and any pair of $R$-modules $M, N$. It follows that any object $K$ in $D^ b(R)$ is isomorphic to the direct sum of its cohomologies: $K \cong \bigoplus H^ i(K)[-i]$, see Derived Categories, Lemma 13.27.8.

Example 15.66.4. Let $k$ be a field and let $R$ be the ring of dual numbers over $k$, i.e., $R = k[x]/(x^2)$. Denote $\epsilon \in R$ the class of $x$. Let $M = R/(\epsilon )$. Then $M$ is quasi-isomorphic to the complex

\[ \ldots \to R \xrightarrow {\epsilon } R \xrightarrow {\epsilon } R \]

and $R$ is an injective $R$-module. However one usually does not consider $M$ to have finite injective dimension in this situation. This explains why we consider bounded (in both directions) complexes of injective modules in our definition of bounded injective dimension of objects of $D(R)$.

Lemma 15.66.5. Let $R$ be a ring. Let $K \in D(R)$.

  1. If $K$ is in $D^ b(R)$ and $H^ i(K)$ has finite injective dimension for all $i$, then $K$ has finite injective dimension.

  2. If $K^\bullet $ represents $K$, is a bounded complex of $R$-modules, and $K^ i$ has finite injective dimension for all $i$, then $K$ has finite injective dimension.

Proof. Omitted. Hint: Apply the spectral sequences of Derived Categories, Lemma 13.21.3 to the functor $F = \mathop{\mathrm{Hom}}\nolimits _ R(N, -)$ to get a computation of $\mathop{\mathrm{Ext}}\nolimits ^ i_ A(N, K)$ and use the criterion of Lemma 15.66.2. $\square$

Lemma 15.66.6. Let $R$ be a Noetherian ring. Let $I \subset R$ be an ideal contained in the Jacobson radical of $R$. Let $K \in D^+(R)$ have finite cohomology modules. Then the following are equivalent

  1. $K$ has finite injective dimension, and

  2. there exists a $b$ such that $\mathop{\mathrm{Ext}}\nolimits ^ i_ R(R/J, K) = 0$ for $i > b$ and any ideal $J \supset I$.

Proof. The implication (1) $\Rightarrow $ (2) is immediate. Assume (2). Say $H^ i(K) = 0$ for $i < a$. Then $\mathop{\mathrm{Ext}}\nolimits ^ i(M, K) = 0$ for $i < a$ and all $R$-modules $M$. Thus it suffices to show that $\text{Ext}^ i(M, K) = 0$ for $i > b$ any finite $R$-module $M$, see Lemma 15.66.2. By Algebra, Lemma 10.61.1 the module $M$ has a finite filtration whose successive quotients are of the form $R/\mathfrak p$ where $\mathfrak p$ is a prime ideal. If $0 \to M_1 \to M \to M_2 \to 0$ is a short exact sequence and $\text{Ext}^ i(M_ j, K) = 0$ for $i > b$ and $j = 1, 2$, then $\text{Ext}^ i(M, K) = 0$ for $i > b$. Thus we may assume $M = R/\mathfrak p$. If $I \subset \mathfrak p$, then the vanishing follows from the assumption. If not, then choose $f \in R$, $f \not\in \mathfrak p$. Consider the short exact sequence

\[ 0 \to R/\mathfrak p \xrightarrow {f} R/\mathfrak p \to R/(\mathfrak p, f) \to 0 \]

We have the desired vanishing for $R/(\mathfrak p, f)$ by assumption. On the other hand, the modules $E^ i = \mathop{\mathrm{Ext}}\nolimits ^ i(R/\mathfrak p, K)$ are finite by our assumption on $K$ (bounded below with finite cohomology modules), the spectral sequence (15.64.0.1), and Algebra, Lemma 10.70.9. Thus $E^ i$ for $i > b$ is a finite $R$-module such that $E^ i/fE^ i = 0$. We conclude by Nakayama's lemma (Algebra, Lemma 10.19.1) that $E^ i$ is zero. $\square$

Lemma 15.66.7. Let $(R, \mathfrak m, \kappa )$ be a local Noetherian ring. Let $K \in D^+(R)$ have finite cohomology modules. Then the following are equivalent

  1. $K$ has finite injective dimension, and

  2. $\mathop{\mathrm{Ext}}\nolimits ^ i_ R(\kappa , K) = 0$ for $i \gg 0$.

Proof. This is a special case of Lemma 15.66.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A5R. Beware of the difference between the letter 'O' and the digit '0'.