Definition 10.103.12. Let R be a Noetherian ring. Let M be a finite R-module. We say M is Cohen-Macaulay if M_\mathfrak p is a Cohen-Macaulay module over R_\mathfrak p for all primes \mathfrak p of R.
Definition 10.103.12. Let R be a Noetherian ring. Let M be a finite R-module. We say M is Cohen-Macaulay if M_\mathfrak p is a Cohen-Macaulay module over R_\mathfrak p for all primes \mathfrak p of R.
Comments (0)
There are also: