Lemma 29.54.8. A finite (or even integral) birational morphism $f : X \to Y$ of integral schemes with $Y$ normal is an isomorphism.
Proof. Let $V \subset Y$ be an affine open with inverse image $U \subset X$ which is an affine open too. Since $f$ is a birational morphism of integral schemes, the homomorphism $\mathcal{O}_ Y(V) \to \mathcal{O}_ X(U)$ is an injective map of domains which induces an isomorphism of fraction fields. As $Y$ is normal, the ring $\mathcal{O}_ Y(V)$ is integrally closed in the fraction field. Since $f$ is finite (or integral) every element of $\mathcal{O}_ X(U)$ is integral over $\mathcal{O}_ Y(V)$. We conclude that $\mathcal{O}_ Y(V) = \mathcal{O}_ X(U)$. This proves that $f$ is an isomorphism as desired. $\square$
Comments (0)
There are also: