The Stacks project

Lemma 20.34.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $i : Z \to X$ be the inclusion of a closed subset.

  1. For $K$ in $D(\mathcal{O}_ X|_ Z)$ we have $i_*K$ in $D_ Z(\mathcal{O}_ X)$.

  2. The functor $i_* : D(\mathcal{O}_ X|_ Z) \to D_ Z(\mathcal{O}_ X)$ is an equivalence with quasi-inverse $i^{-1}|_{D_ Z(\mathcal{O}_ X)} = R\mathcal{H}_ Z|_{D_ Z(\mathcal{O}_ X)}$.

  3. The functor $i_* \circ R\mathcal{H}_ Z : D(\mathcal{O}_ X) \to D_ Z(\mathcal{O}_ X)$ is right adjoint to the inclusion functor $D_ Z(\mathcal{O}_ X) \to D(\mathcal{O}_ X)$.

Proof. Part (1) is immediate from the definitions. Part (3) is a formal consequence of part (2) and Lemma 20.34.1. In the rest of the proof we prove part (2).

Let us think of $i$ as the morphism of ringed spaces $i : (Z, \mathcal{O}_ X|_ Z) \to (X, \mathcal{O}_ X)$. Recall that $i^*$ and $i_*$ is an adjoint pair of functors. Since $i$ is a closed immersion, $i_*$ is exact. Since $i^{-1}\mathcal{O}_ X = \mathcal{O}_ X|_ Z$ is the structure sheaf of $(Z, \mathcal{O}_ X|_ Z)$ we see that $i^* = i^{-1}$ is exact and we see that that $i^*i_* = i^{-1}i_*$ is isomorphic to the identify functor. See Modules, Lemmas 17.3.3 and 17.6.1. Thus $i_* : D(\mathcal{O}_ X|_ Z) \to D_ Z(\mathcal{O}_ X)$ is fully faithful and $i^{-1}$ determines a left inverse. On the other hand, suppose that $K$ is an object of $D_ Z(\mathcal{O}_ X)$ and consider the adjunction map $K \to i_*i^{-1}K$. Using exactness of $i_*$ and $i^{-1}$ this induces the adjunction maps $H^ n(K) \to i_*i^{-1}H^ n(K)$ on cohomology sheaves. Since these cohomology sheaves are supported on $Z$ we see these adjunction maps are isomorphisms and we conclude that $i_* : D(\mathcal{O}_ X|_ Z) \to D_ Z(\mathcal{O}_ X)$ is an equivalence.

To finish the proof it suffices to show that $R\mathcal{H}_ Z(K) = i^{-1}K$ if $K$ is an object of $D_ Z(\mathcal{O}_ X)$. To do this we can use that $K = i_*i^{-1}K$ as we've just proved this is the case. Then Lemma 20.34.1 tells us what we want. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AEF. Beware of the difference between the letter 'O' and the digit '0'.