The Stacks project

Lemma 81.10.2. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. Let $Z \subset X$ closed subspace such that $f^{-1}Z \to Z$ is integral and universally injective. Let $\overline{y}$ be a geometric point of $Y$ and $\overline{x} = f(\overline{y})$. Let $\mathcal{G}$ be an abelian sheaf on $Y$. Then the map of two term complexes

\[ \left(f_*\mathcal{G}_{\overline{x}} \to (f \circ j')_*(\mathcal{G}|_ V)_{\overline{x}}\right) \longrightarrow \left(\mathcal{G}_{\overline{y}} \to j'_*(\mathcal{G}|_ V)_{\overline{y}}\right) \]

induces an isomorphism on kernels and an injection on cokernels. Here $V = Y \setminus f^{-1}Z$ and $j' : V \to Y$ is the inclusion.

Proof. Choose a distinguished triangle

\[ \mathcal{G} \to Rj'_*\mathcal{G}|_ V \to Q \to \mathcal{G}[1] \]

n $D(Y_{\acute{e}tale})$. The cohomology sheaves of $Q$ are supported on $|f^{-1}Z|$. We apply $Rf_*$ and we obtain

\[ Rf_*\mathcal{G} \to Rf_*Rj'_*\mathcal{G}|_ V \to Rf_*Q \to Rf_*\mathcal{G}[1] \]

Taking stalks at $\overline{x}$ we obtain an exact sequence

\[ 0 \to (R^{-1}f_*Q)_{\overline{x}} \to f_*\mathcal{G}_{\overline{x}} \to (f \circ j')_*(\mathcal{G}|_ V)_{\overline{x}} \to (R^0f_*Q)_{\overline{x}} \]

We can compare this with the exact sequence

\[ 0 \to H^{-1}(Q)_{\overline{y}} \to \mathcal{G}_{\overline{y}} \to j'_*(\mathcal{G}|_ V)_{\overline{y}} \to H^0(Q)_{\overline{y}} \]

Thus we see that the lemma follows because $Q_{\overline{y}} = Rf_*Q_{\overline{x}}$ by Lemma 81.10.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AER. Beware of the difference between the letter 'O' and the digit '0'.