Lemma 81.10.5. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. Let $Z \subset X$ be a closed subspace. Assume $f^{-1}Z \to Z$ is an isomorphism and that $f$ is flat in every point of $f^{-1}Z$. For any $Q$ in $D_\mathit{QCoh}(\mathcal{O}_ Y)$ supported on $|f^{-1}Z|$ we have $Lf^*Rf_*Q = Q$.
Proof. We show the canonical map $Lf^*Rf_*Q \to Q$ is an isomorphism by checking on stalks at $\overline{y}$. If $\overline{y}$ is not in $f^{-1}Z$, then both sides are zero and the result is true. Assume the image $\overline{x}$ of $\overline{y}$ is in $Z$. By Lemma 81.10.1 we have $Rf_*Q_{\overline{x}} = Q_{\overline{y}}$ and since $f$ is flat at $\overline{y}$ we see that
Thus we have to check that the canonical map
is an isomorphism in the derived category. Let $I_{\overline{x}} \subset \mathcal{O}_{X, \overline{x}}$ be the stalk of the ideal sheaf defining $Z$. Since $Z \to X$ is locally of finite presentation this ideal is finitely generated and the cohomology groups of $Q_{\overline{y}}$ are $I_{\overline{y}} = I_{\overline{x}}\mathcal{O}_{Y, \overline{y}}$-power torsion by Lemma 81.10.4 applied to $Q$ on $Y$. It follows that they are also $I_{\overline{x}}$-power torsion. The ring map $\mathcal{O}_{X, \overline{x}} \to \mathcal{O}_{Y, \overline{y}}$ is flat and induces an isomorphism after dividing by $I_{\overline{x}}$ and $I_{\overline{y}}$ because we assumed that $f^{-1}Z \to Z$ is an isomorphism. Hence we see that the cohomology modules of $Q_{\overline{y}} \otimes _{\mathcal{O}_{X, \overline{x}}} \mathcal{O}_{Y, \overline{y}}$ are equal to the cohomology modules of $Q_{\overline{y}}$ by More on Algebra, Lemma 15.89.2 which finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)