The Stacks project

Definition 86.9.9. Let $S$ be a scheme. Let $A$ be a weakly admissible topological ring over $S$, see Definition 86.4.81. The formal spectrum of $A$ is the affine formal algebraic space

\[ \text{Spf}(A) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Spec}}(A/I) \]

where the colimit is over the set of weak ideals of definition of $A$ and taken in the category $\mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{fppf})$.

[1] See More on Algebra, Definition 15.36.1 for the classical case and see Remark 86.2.3 for a discussion of differences.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AIF. Beware of the difference between the letter 'O' and the digit '0'.