The Stacks project

Lemma 87.19.7. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of affine formal algebraic spaces which is representable by algebraic spaces. Then $f$ is representable (by schemes) and affine.

Proof. We will show that $f$ is affine; it will then follow that $f$ is representable and affine by Morphisms of Spaces, Lemma 67.20.3. Write $Y = \mathop{\mathrm{colim}}\nolimits Y_\mu $ and $X = \mathop{\mathrm{colim}}\nolimits X_\lambda $ as in Definition 87.9.1. Let $T \to Y$ be a morphism where $T$ is a scheme over $S$. We have to show that $X \times _ Y T \to T$ is affine, see Bootstrap, Definition 80.4.1. To do this we may assume that $T$ is affine and we have to prove that $X \times _ Y T$ is affine. In this case $T \to Y$ factors through $Y_\mu \to Y$ for some $\mu $, see Lemma 87.9.4. Since $f$ is quasi-compact we see that $X \times _ Y T$ is quasi-compact (Lemma 87.17.3). Hence $X \times _ Y T \to X$ factors through $X_\lambda $ for some $\lambda $. Similarly $X_\lambda \to Y$ factors through $Y_\mu $ after increasing $\mu $. Then $X \times _ Y T = X_\lambda \times _{Y_\mu } T$. We conclude as fibre products of affine schemes are affine. $\square$

Comments (4)

Comment #4054 by Matthew Emerton on

Lemma 0AIG has a locally quasi-finite hypothesis, which doesn't seem to hold in the generality of the present lemma (unless I'm missing something). But it seems that the second argument just works anyway to show that if is a scheme, then the fibre product is an affine scheme.

Comment #4137 by on

Yes, you are totally right! I have fixed this more or less as you suggested. See changes here.

Comment #7373 by DatPham on

I think it would be better to indicate where we use the assumption that is representable by algebraic spaces. I guess this is used to ensure that is a quasi-compact algebraic space, hence admits an \' etale cover by an affine scheme ; the composite then factors through some , and the same is true for by the sheaf property.

Comment #7397 by on

Well, already in order to say what it means that is affine using Bootstrap, Definition 80.4.1 we need to know that is representable by algebraic spaces. The factorization of through some follows from Lemma 87.9.4. So I think the proof is fine.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AKN. Beware of the difference between the letter 'O' and the digit '0'.