The Stacks project

Lemma 109.12.3. Let $R$ be a countable ring. Then $R$ is coherent if and only if $R^\mathbf {N}$ is a flat $R$-module.

Proof. If $R$ is coherent, then $R^\mathbf {N}$ is a flat module by Algebra, Proposition 10.90.6. Assume $R^\mathbf {N}$ is flat. Let $I \subset R$ be a finitely generated ideal. To prove the lemma we show that $I$ is finitely presented as an $R$-module. Namely, the map $I \otimes _ R R^\mathbf {N} \to R^\mathbf {N}$ is injective as $R^\mathbf {N}$ is flat and its image is $I^\mathbf {N}$ by Lemma 109.12.1. Thus we conclude by Lemma 109.12.2. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 109.12: Nonflat completions

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ALB. Beware of the difference between the letter 'O' and the digit '0'.