Lemma 15.9.5. Let $A$ be a ring, let $I \subset A$ be an ideal. Let $f \in A[x]$ be a monic polynomial. Let $\overline{f} = \overline{g} \overline{h}$ be a factorization of $f$ in $A/I[x]$ such that $\overline{g}$ and $\overline{h}$ are monic and generate the unit ideal in $A/I[x]$. Then there exists an étale ring map $A \to A'$ which induces an isomorphism $A/I \to A'/IA'$ and a factorization $f = g' h'$ in $A'[x]$ with $g'$, $h'$ monic lifting the given factorization over $A/I$.
Proof. We will deduce this from results on the universal factorization proved earlier; however, we encourage the reader to find their own proof not using this trick. Say $\deg (\overline{g}) = n$ and $\deg (\overline{h}) = m$ so that $\deg (f) = n + m$. Write $f = x^{n + m} + \sum \alpha _ i x^{n + m - i}$ for some $\alpha _1, \ldots , \alpha _{n + m} \in A$. Consider the ring map
of Algebra, Example 10.143.12. Let $R \to A$ be the ring map which sends $a_ i$ to $\alpha _ i$. Set
By construction the image $f_ B$ of $f$ in $B[x]$ factors, say $f_ B = g_ B h_ B$ with $g_ B = x^ n + \sum (1 \otimes b_ i) x^{n - i}$ and similarly for $h_ B$. Write $\overline{g} = x^ n + \sum \overline{\beta }_ i x^{n - i}$ and $\overline{h} = x^ m + \sum \overline{\gamma }_ i x^{m - i}$. The $A$-algebra map
maps $g_ B$ and $h_ B$ to $\overline{g}$ and $\overline{h}$ in $A/I[x]$. The displayed map is surjective; denote $J \subset B$ its kernel. From the discussion in Algebra, Example 10.143.12 it is clear that $A \to B$ is etale at all points of $V(J) \subset \mathop{\mathrm{Spec}}(B)$. Choose $g \in B$ as in Lemma 15.9.4 and consider the $A$-algebra $B_ g$. Since $g$ maps to a unit in $B/J = A/I$ we obtain also a map $B_ g/I B_ g \to A/I$ of $A/I$-algebras. Since $A/I \to B_ g/I B_ g$ is étale, also $B_ g/IB_ g \to A/I$ is étale (Algebra, Lemma 10.143.8). Hence there exists an idempotent $e \in B_ g/I B_ g$ such that $A/I = (B_ g/I B_ g)_ e$ (Algebra, Lemma 10.143.9). Choose a lift $h \in B_ g$ of $e$. Then $A \to A' = (B_ g)_ h$ with factorization given by the image of the factorization $f_ B = g_ B h_ B$ in $A'$ is a solution to the problem posed by the lemma. $\square$
Comments (2)
Comment #1334 by JuanPablo on
Comment #1354 by Johan on