Lemma 10.143.8. Let $R \to S$ and $R \to S'$ be étale. Then any $R$-algebra map $S' \to S$ is étale.

**Proof.**
First of all we note that $S' \to S$ is of finite presentation by Lemma 10.6.2. Let $\mathfrak q \subset S$ be a prime ideal lying over the primes $\mathfrak q' \subset S'$ and $\mathfrak p \subset R$. By Lemma 10.143.5 the ring map $S'_{\mathfrak q'}/\mathfrak p S'_{\mathfrak q'} \to S_{\mathfrak q}/\mathfrak p S_{\mathfrak q}$ is a map of finite separable extensions of $\kappa (\mathfrak p)$. In particular it is flat. Hence by Lemma 10.128.8 we see that $S'_{\mathfrak q'} \to S_{\mathfrak q}$ is flat. Thus $S' \to S$ is flat. Moreover, the above also shows that $\mathfrak q'S_{\mathfrak q}$ is the maximal ideal of $S_{\mathfrak q}$ and that the residue field extension of $S'_{\mathfrak q'} \to S_{\mathfrak q}$ is finite separable. Hence from Lemma 10.143.7 we conclude that $S' \to S$ is étale at $\mathfrak q$. Since being étale is local (see Lemma 10.143.3) we win.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #8297 by nhw on

Comment #8923 by Stacks project on