Lemma 10.141.3. Results on étale ring maps.

The ring map $R \to R_ f$ is étale for any ring $R$ and any $f \in R$.

Compositions of étale ring maps are étale.

A base change of an étale ring map is étale.

The property of being étale is local: Given a ring map $R \to S$ and elements $g_1, \ldots , g_ m \in S$ which generate the unit ideal such that $R \to S_{g_ j}$ is étale for $j = 1, \ldots , m$ then $R \to S$ is étale.

Given $R \to S$ of finite presentation, and a flat ring map $R \to R'$, set $S' = R' \otimes _ R S$. The set of primes where $R' \to S'$ is étale is the inverse image via $\mathop{\mathrm{Spec}}(S') \to \mathop{\mathrm{Spec}}(S)$ of the set of primes where $R \to S$ is étale.

An étale ring map is syntomic, in particular flat.

If $S$ is finite type over a field $k$, then $S$ is étale over $k$ if and only if $\Omega _{S/k} = 0$.

Any étale ring map $R \to S$ is the base change of an étale ring map $R_0 \to S_0$ with $R_0$ of finite type over $\mathbf{Z}$.

Let $A = \mathop{\mathrm{colim}}\nolimits A_ i$ be a filtered colimit of rings. Let $A \to B$ be an étale ring map. Then there exists an étale ring map $A_ i \to B_ i$ for some $i$ such that $B \cong A \otimes _{A_ i} B_ i$.

Let $A$ be a ring. Let $S$ be a multiplicative subset of $A$. Let $S^{-1}A \to B'$ be étale. Then there exists an étale ring map $A \to B$ such that $B' \cong S^{-1}B$.

## Comments (4)

Comment #260 by David Holmes on

Comment #262 by Johan on

Comment #2812 by Dario Weißmann on

Comment #2915 by Johan on