Lemma 10.137.13. Let $R \to S$ be a ring map. Then $R \to S$ is smooth if and only if $R \to S$ is smooth at every prime $\mathfrak q$ of $S$.
A ring map is smooth if and only if it is smooth at all primes of the target
Proof. The direct implication is trivial. Suppose that $R \to S$ is smooth at every prime $\mathfrak q$ of $S$. Since $\mathop{\mathrm{Spec}}(S)$ is quasi-compact, see Lemma 10.17.8, there exists a finite covering $\mathop{\mathrm{Spec}}(S) = \bigcup D(g_ i)$ such that each $S_{g_ i}$ is smooth. By Lemma 10.23.3 this implies that $S$ is of finite presentation over $R$. According to Lemma 10.134.13 we see that $\mathop{N\! L}\nolimits _{S/R} \otimes _ S S_{g_ i}$ is quasi-isomorphic to a finite projective $S_{g_ i}$-module. By Lemma 10.78.2 this implies that $\mathop{N\! L}\nolimits _{S/R}$ is quasi-isomorphic to a finite projective $S$-module. $\square$
Comments (3)
Comment #3626 by Herman Rohrbach on
Comment #4736 by Andy on
Comment #4820 by Johan on