Lemma 10.40.6. Let $R \to R'$ be a ring map and let $M$ be a finite $R$-module. Then $\text{Supp}(M \otimes _ R R')$ is the inverse image of $\text{Supp}(M)$.

**Proof.**
Let $\mathfrak p \in \text{Supp}(M)$. By Nakayama's lemma (Lemma 10.20.1) we see that

is a nonzero $\kappa (\mathfrak p)$ vector space. Hence for every prime $\mathfrak p' \subset R'$ lying over $\mathfrak p$ we see that

is nonzero. This implies $\mathfrak p' \in \text{Supp}(M \otimes _ R R')$. For the converse, if $\mathfrak p' \subset R'$ is a prime lying over an arbitrary prime $\mathfrak p \subset R$, then

Hence if $\mathfrak p' \in \text{Supp}(M \otimes _ R R')$ lies over the prime $\mathfrak p \subset R$, then $\mathfrak p \in \text{Supp}(M)$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: