Lemma 10.40.6. Let $R \to R'$ be a ring map and let $M$ be a finite $R$-module. Then $\text{Supp}(M \otimes _ R R')$ is the inverse image of $\text{Supp}(M)$.

Proof. Let $\mathfrak p \in \text{Supp}(M)$. By Nakayama's lemma (Lemma 10.20.1) we see that

$M \otimes _ R \kappa (\mathfrak p) = M_\mathfrak p/\mathfrak p M_\mathfrak p$

is a nonzero $\kappa (\mathfrak p)$ vector space. Hence for every prime $\mathfrak p' \subset R'$ lying over $\mathfrak p$ we see that

$(M \otimes _ R R')_{\mathfrak p'}/\mathfrak p' (M \otimes _ R R')_{\mathfrak p'} = (M \otimes _ R R') \otimes _{R'} \kappa (\mathfrak p') = M \otimes _ R \kappa (\mathfrak p) \otimes _{\kappa (\mathfrak p)} \kappa (\mathfrak p')$

is nonzero. This implies $\mathfrak p' \in \text{Supp}(M \otimes _ R R')$. For the converse, if $\mathfrak p' \subset R'$ is a prime lying over an arbitrary prime $\mathfrak p \subset R$, then

$(M \otimes _ R R')_{\mathfrak p'} = M_\mathfrak p \otimes _{R_\mathfrak p} R'_{\mathfrak p'}.$

Hence if $\mathfrak p' \in \text{Supp}(M \otimes _ R R')$ lies over the prime $\mathfrak p \subset R$, then $\mathfrak p \in \text{Supp}(M)$. $\square$

There are also:

• 2 comment(s) on Section 10.40: Supports and annihilators

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).