Lemma 10.40.7. Let $R$ be a ring, let $M$ be an $R$-module, and let $m \in M$. Then $\mathfrak p \in V(\text{Ann}(m))$ if and only if $m$ does not map to zero in $M_\mathfrak p$.
Proof. We may replace $M$ by $Rm \subset M$. Then (1) $\text{Ann}(m) = \text{Ann}(M)$ and (2) $m$ does not map to zero in $M_\mathfrak p$ if and only if $\mathfrak p \in \text{Supp}(M)$. The result now follows from Lemma 10.40.5. $\square$
Comments (5)
Comment #4162 by Robin on
Comment #4165 by Johan on
Comment #4166 by Robin on
Comment #6987 by Xiaolong Liu on
Comment #7220 by Johan on
There are also: