Lemma 87.15.5. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of formal algebraic spaces over $S$. The diagonal morphism $\Delta : X \to X \times _ Y X$ is representable (by schemes), a monomorphism, locally quasi-finite, locally of finite type, and separated.
Proof. Let $T$ be a scheme and let $T \to X \times _ Y X$ be a morphism. Then
\[ T \times _{(X \times _ Y X)} X = T \times _{(X \times _ S X)} X \]
Hence the result follows immediately from Lemma 87.11.2. $\square$
Comments (0)