Lemma 35.8.8. Let $S$ be a scheme. Let

$\tau \in \{ Zariski, \linebreak[0] fppf, \linebreak[0] {\acute{e}tale}, \linebreak[0] smooth, \linebreak[0] syntomic\} $ and $\mathcal{C} = (\mathit{Sch}/S)_\tau $, or

let $\tau = {\acute{e}tale}$ and $\mathcal{C} = S_{\acute{e}tale}$, or

let $\tau = Zariski$ and $\mathcal{C} = S_{Zar}$.

Let $\mathcal{F}$ be an abelian sheaf on $\mathcal{C}$. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ be affine. Let $\mathcal{U} = \{ U_ i \to U\} _{i = 1, \ldots , n}$ be a standard affine $\tau $-covering in $\mathcal{C}$. Then

$\mathcal{V} = \{ \coprod _{i = 1, \ldots , n} U_ i \to U\} $ is a $\tau $-covering of $U$,

$\mathcal{U}$ is a refinement of $\mathcal{V}$, and

the induced map on Čech complexes (Cohomology on Sites, Equation (21.8.2.1))

\[ \check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F}) \longrightarrow \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}) \]is an isomorphism of complexes.

## Comments (2)

Comment #2151 by Katha on

Comment #2187 by Johan on