Lemma 87.24.9. Let $S$ be a scheme. Let $f : X \to Y$ and $Z \to Y$ be morphisms of formal algebraic spaces over $S$. If $Z$ is locally Noetherian and $f$ locally of finite type, then $Z \times _ Y X$ is locally Noetherian.
Proof. The morphism $Z \times _ Y X \to Z$ is locally of finite type by Lemma 87.24.4. Hence this follows from Lemma 87.24.8. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)