Lemma 87.21.3. Let $S$ be a scheme. Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of formal algebraic spaces over $S$. Assume $X$, $Y$, $Z$ are locally Noetherian and $f$ and $g$ locally of finite type. Then if $f$ and $g$ are rig-surjective, so is $g \circ f$.

** Rig-surjectivity of locally finite type morphisms is preserved under composition **

**Proof.**
Follows in a straightforward manner from the definitions (and Formal Spaces, Lemma 86.24.3).
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (1)

Comment #2112 by Matthew Emerton on