Lemma 88.21.7. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of locally Noetherian formal algebraic spaces which is representable by algebraic spaces, étale, and surjective. Then $f$ is rig-surjective.
Proof. Let $p : \text{Spf}(R) \to Y$ be an adic morphism where $R$ is a complete discrete valuation ring. Let $Z = \text{Spf}(R) \times _ Y X$. Then $Z \to \text{Spf}(R)$ is representable by algebraic spaces, étale, and surjective. Hence $Z$ is nonempty. Pick a nonempty affine formal algebraic space $V$ and an étale morphism $V \to Z$ (possible by our definitions). Then $V \to \text{Spf}(R)$ corresponds to $R \to A^\wedge $ where $R \to A$ is an étale ring map, see Formal Spaces, Lemma 87.19.13. Since $A^\wedge \not= 0$ (as $V \not= \emptyset $) we can find a maximal ideal $\mathfrak m$ of $A$ lying over $\mathfrak m_ R$. Then $A_\mathfrak m$ is a discrete valuation ring (More on Algebra, Lemma 15.44.4). Then $R' = A_\mathfrak m^\wedge $ is a complete discrete valuation ring (More on Algebra, Lemma 15.43.5). Applying Formal Spaces, Lemma 87.9.10. we find the desired morphism $\text{Spf}(R') \to V \to Z \to X$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)