Lemma 88.25.2. Assume we have
Noetherian affine schemes X, X', and Y,
a closed subset T \subset |X|,
a morphism f : X' \to X locally of finite type and étale over X \setminus T,
a morphism h : Y \to X,
a morphism \alpha : Y_{/T} \to X'_{/T} over X_{/T} (see proof for notation).
Then there exists an étale morphism b : Y' \to Y of affine schemes which induces an isomorphism b_{/T} : Y'_{/T} \to Y_{/T} and a morphism a : Y' \to X' over X such that \alpha = a_{/T} \circ b_{/T}^{-1}.
Comments (0)