Processing math: 100%

The Stacks project

Lemma 87.31.2. Let S be a scheme. Let f : X \to Y be a morphism of formal algebraic spaces over S. The following are equivalent

  1. f is proper,

  2. for every scheme Z and morphism Z \to Y the base change Z \times _ Y X \to Z of f is proper,

  3. for every affine scheme Z and every morphism Z \to Y the base change Z \times _ Y X \to Z of f is proper,

  4. for every affine scheme Z and every morphism Z \to Y the formal algebraic space Z \times _ Y X is an algebraic space proper over Z,

  5. there exists a covering \{ Y_ j \to Y\} as in Definition 87.11.1 such that the base change Y_ j \times _ Y X \to Y_ j is proper for all j.

Proof. Omitted. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.