Lemma 87.28.4. With assumptions and notation as in Theorem 87.27.4 let $f : X' \to X$ correspond to $g : W \to X_{/T}$. Then $f$ is proper if and only if $g$ is a formal modification (Definition 87.24.1).

**Proof.**
If $f$ is proper, then $g$ is a formal modification by Lemma 87.24.3. Assume $g$ is a formal modification. By Lemmas 87.28.1 and 87.28.3 we see that $f$ is quasi-compact and separated.

By Cohomology of Spaces, Lemma 68.19.2 and Remark 68.19.3 it suffices to show that given any commutative diagram

where $R$ is a complete discrete valuation ring with fraction field $K$, there is a dotted arrow making the diagram commute. There are three cases: Case I: $p(\mathop{\mathrm{Spec}}(R)) \subset U$. This case is trivial because $U' \to U$ is an isomorphism. Case II: $p$ maps $\mathop{\mathrm{Spec}}(R)$ into $T$. This case follows from our assumption that $g : W \to X_{/T}$ is proper. Namely, if $Z$ denotes the reduced induced closed subspace structure on $T$, then $p$ factors through $Z$ and

is proper by assumption which implies we get the lifting property by Cohomology of Spaces, Lemma 68.19.2 applied to the displayed arrow. Case III: $p(\mathop{\mathrm{Spec}}(K))$ is not in $T$ but $p$ maps the closed point of $\mathop{\mathrm{Spec}}(R)$ into $T$. In this case the corresponding morphism

is an adic morphism (by Formal Spaces, Lemma 86.14.4 and Definition 86.23.2). Hence our assumption that $g : W \to X_{/T}$ be rig-surjective implies we can lift $g_{/T}$ to a morphism $\text{Spf}(R') \to W = X'_{/T}$ for some extension of complete discrete valuation rings $R \subset R'$. Algebraizing the composition $\text{Spf}(R') \to X'$ using Formal Spaces, Lemma 86.33.3 we find a morphism $\mathop{\mathrm{Spec}}(R') \to X'$ lifting $p$ as desired. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)