Lemma 38.25.4. If in Situation 38.25.1 the ring $A$ is henselian then the lemma holds.
Proof. It suffices to prove this when $B$ is essentially of finite presentation over $A$ and $N$ is of finite presentation over $B$, see Lemma 38.25.3. Let us temporarily make the additional assumption that $N$ is flat over $A$. Then $N$ is a filtered colimit $N = \mathop{\mathrm{colim}}\nolimits _ i F_ i$ of free $A$-modules $F_ i$ such that the transition maps $u_{ii'} : F_ i \to F_{i'}$ are injective modulo $\mathfrak m_ A$, see Lemma 38.19.5. Each of the compositions $u_ i : F_ i \to M$ is $A$-universally injective by Lemma 38.7.5 wherefore $u = \mathop{\mathrm{colim}}\nolimits u_ i$ is $A$-universally injective as desired.
Assume $A$ is a henselian local ring, $B$ is essentially of finite presentation over $A$, $N$ of finite presentation over $B$. By Theorem 38.24.1 there exists a finitely generated ideal $I \subset A$ such that $N/IN$ is flat over $A/I$ and such that $N/I^2N$ is not flat over $A/I^2$ unless $I = 0$. The result of the previous paragraph shows that the lemma holds for $u \bmod I : N/IN \to M/IM$ over $A/I$. Consider the commutative diagram
whose rows are exact by right exactness of $\otimes $ and the fact that $M$ is flat over $A$. Note that the left vertical arrow is the map $N/IN \otimes _{A/I} I/I^2 \to M/IM \otimes _{A/I} I/I^2$, hence is injective. A diagram chase shows that the lower left arrow is injective, i.e., $\text{Tor}^1_{A/I^2}(I/I^2, M/I^2) = 0$ see Algebra, Remark 10.75.9. Hence $N/I^2N$ is flat over $A/I^2$ by Algebra, Lemma 10.99.8 a contradiction unless $I = 0$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)