The Stacks project

Lemma 48.20.4. In Situation 48.20.1 let $X$ be a scheme of finite type over $S$ and let $\mathcal{U}$ be a finite open covering of $X$ by schemes separated over $S$. Then there exists a dualizing complex normalized relative to $\omega _ S^\bullet $ and $\mathcal{U}$.

Proof. Say $\mathcal{U} : X = \bigcup _{i = 1, \ldots , n} U_ i$. We prove the lemma by induction on $n$. The base case $n = 1$ is immediate. Assume $n > 1$. Set $X' = U_1 \cup \ldots \cup U_{n - 1}$ and let $(K', \{ \alpha '_ i\} _{i = 1, \ldots , n - 1})$ be a dualizing complex normalized relative to $\omega _ S^\bullet $ and $\mathcal{U}' : X' = \bigcup _{i = 1, \ldots , n - 1} U_ i$. It is clear that $(K'|_{X' \cap U_ n}, \alpha '_ i|_{U_ i \cap U_ n})$ is a dualizing complex normalized relative to $\omega _ S^\bullet $ and the covering $X' \cap U_ n = \bigcup _{i = 1, \ldots , n - 1} U_ i \cap U_ n$. On the other hand, by condition (3) the pair $(\omega _ n^\bullet |_{X' \cap U_ n}, \varphi _{ni})$ is another dualizing complex normalized relative to $\omega _ S^\bullet $ and the covering $X' \cap U_ n = \bigcup _{i = 1, \ldots , n - 1} U_ i \cap U_ n$. By Lemma 48.20.2 we obtain a unique isomorphism

\[ \epsilon : K'|_{X' \cap U_ n} \longrightarrow \omega _ i^\bullet |_{X' \cap U_ n} \]

compatible with the given local isomorphisms. By Cohomology, Lemma 20.45.1 we obtain $K \in D(\mathcal{O}_ X)$ together with isomorphisms $\beta : K|_{X'} \to K'$ and $\gamma : K|_{U_ n} \to \omega _ n^\bullet $ such that $\epsilon = \gamma |_{X'\cap U_ n} \circ \beta |_{X' \cap U_ n}^{-1}$. Then we define

\[ \alpha _ i = \alpha '_ i \circ \beta |_{U_ i}, i = 1, \ldots , n - 1, \text{ and } \alpha _ n = \gamma \]

We still need to verify that $\varphi _{ij}$ is given by $\alpha _ j|_{U_ i \cap U_ j} \circ \alpha _ i^{-1}|_{U_ i \cap U_ j}$. For $i, j \leq n - 1$ this follows from the corresponding condition for $\alpha _ i'$. For $i = j = n$ it is clear as well. If $i < j = n$, then we get

\[ \alpha _ n|_{U_ i \cap U_ n} \circ \alpha _ i^{-1}|_{U_ i \cap U_ n} = \gamma |_{U_ i \cap U_ n} \circ \beta ^{-1}|_{U_ i \cap U_ n} \circ (\alpha '_ i)^{-1}|_{U_ i \cap U_ n} = \epsilon |_{U_ i \cap U_ n} \circ (\alpha '_ i)^{-1}|_{U_ i \cap U_ n} \]

This is equal to $\alpha _{in}$ exactly because $\epsilon $ is the unique map compatible with the maps $\alpha _ i'$ and $\alpha _{ni}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0AU9. Beware of the difference between the letter 'O' and the digit '0'.