48 Duality for Schemes
-
Section 48.1: Introduction
-
Section 48.2: Dualizing complexes on schemes
-
Section 48.3: Right adjoint of pushforward
-
Section 48.4: Right adjoint of pushforward and restriction to opens
-
Section 48.5: Right adjoint of pushforward and base change, I
-
Section 48.6: Right adjoint of pushforward and base change, II
-
Section 48.7: Right adjoint of pushforward and trace maps
-
Section 48.8: Right adjoint of pushforward and pullback
-
Section 48.9: Right adjoint of pushforward for closed immersions
-
Section 48.10: Right adjoint of pushforward for closed immersions and base change
-
Section 48.11: Right adjoint of pushforward for finite morphisms
-
Section 48.12: Right adjoint of pushforward for proper flat morphisms
-
Section 48.13: Right adjoint of pushforward for perfect proper morphisms
-
Section 48.14: Right adjoint of pushforward for effective Cartier divisors
-
Section 48.15: Right adjoint of pushforward in examples
-
Section 48.16: Upper shriek functors
-
Section 48.17: Properties of upper shriek functors
-
Section 48.18: Base change for upper shriek
-
Section 48.19: A duality theory
-
Section 48.20: Glueing dualizing complexes
-
Section 48.21: Dimension functions
-
Section 48.22: Dualizing modules
-
Section 48.23: Cohen-Macaulay schemes
-
Section 48.24: Gorenstein schemes
-
Section 48.25: Gorenstein morphisms
-
Section 48.26: More on dualizing complexes
-
Section 48.27: Duality for proper schemes over fields
-
Section 48.28: Relative dualizing complexes
-
Section 48.29: The fundamental class of an lci morphism
-
Section 48.30: Extension by zero for coherent modules
-
Section 48.31: Preliminaries to compactly supported cohomology
-
Section 48.32: Compactly supported cohomology for coherent modules
-
Section 48.33: Duality for compactly supported cohomology
-
Section 48.34: Lichtenbaum's theorem