Remark 48.12.6. Let f : X \to Y, \omega ^\bullet _{X/Y}, and \text{Tr}_{f, \mathcal{O}_ Y} be as in Remark 48.12.5. Let K and M be in D_\mathit{QCoh}(\mathcal{O}_ X) with M pseudo-coherent (for example perfect). Suppose given a map K \otimes _{\mathcal{O}_ X}^\mathbf {L} M \to \omega ^\bullet _{X/Y} which corresponds to an isomorphism K \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(M, \omega ^\bullet _{X/Y}) via Cohomology, Equation (20.42.0.1). Then the relative cup product (Cohomology, Remark 20.28.7)
determines an isomorphism Rf_*K \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*M, \mathcal{O}_ Y). Namely, since \omega ^\bullet _{X/Y} = a(\mathcal{O}_ Y) the canonical map (48.3.5.1)
is an isomorphism by Lemma 48.3.6 and Remark 48.3.8 and the fact that M and Rf_*M are pseudo-coherent, see Derived Categories of Schemes, Lemma 36.30.5. To see that the relative cup product induces this isomorphism use the commutativity of the diagram in Cohomology, Remark 20.42.12.
Comments (0)