Processing math: 100%

The Stacks project

Remark 48.12.6. Let f : X \to Y, \omega ^\bullet _{X/Y}, and \text{Tr}_{f, \mathcal{O}_ Y} be as in Remark 48.12.5. Let K and M be in D_\mathit{QCoh}(\mathcal{O}_ X) with M pseudo-coherent (for example perfect). Suppose given a map K \otimes _{\mathcal{O}_ X}^\mathbf {L} M \to \omega ^\bullet _{X/Y} which corresponds to an isomorphism K \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(M, \omega ^\bullet _{X/Y}) via Cohomology, Equation (20.42.0.1). Then the relative cup product (Cohomology, Remark 20.28.7)

Rf_*K \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*M \to Rf_*(K \otimes _{\mathcal{O}_ X}^\mathbf {L} M) \to Rf_*\omega ^\bullet _{X/Y} \xrightarrow {\text{Tr}_{f, \mathcal{O}_ Y}} \mathcal{O}_ Y

determines an isomorphism Rf_*K \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*M, \mathcal{O}_ Y). Namely, since \omega ^\bullet _{X/Y} = a(\mathcal{O}_ Y) the canonical map (48.3.5.1)

Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(M, \omega ^\bullet _{X/Y}) \to R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*M, \mathcal{O}_ Y)

is an isomorphism by Lemma 48.3.6 and Remark 48.3.8 and the fact that M and Rf_*M are pseudo-coherent, see Derived Categories of Schemes, Lemma 36.30.5. To see that the relative cup product induces this isomorphism use the commutativity of the diagram in Cohomology, Remark 20.42.12.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.