The Stacks project

Lemma 48.3.6. Let $f : X \to Y$ be a morphism of quasi-compact and quasi-separated schemes. Let $a$ be the right adjoint to $Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y)$. Then (48.3.5.1)

\[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K) \]

is an isomorphism for all $L \in D_\mathit{QCoh}(\mathcal{O}_ X)$ and $K \in D_\mathit{QCoh}(\mathcal{O}_ Y)$.

Proof. Let $M \in D_\mathit{QCoh}(\mathcal{O}_ Y)$. Then we have the following

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) & = \mathop{\mathrm{Hom}}\nolimits _ X(Lf^*M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(Lf^*M \otimes _{\mathcal{O}_ X}^\mathbf {L} L, a(K)) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_*(Lf^*M \otimes _{\mathcal{O}_ X}^\mathbf {L} L), K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L, K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K)) \end{align*}

The first equality holds by Cohomology, Lemma 20.28.1. The second equality by Cohomology, Lemma 20.38.2. The third equality by construction of $a$. The fourth equality by Derived Categories of Schemes, Lemma 36.21.1 (this is the important step). The fifth by Cohomology, Lemma 20.38.2. Thus the result holds by the Yoneda lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A9Q. Beware of the difference between the letter 'O' and the digit '0'.