Processing math: 100%

The Stacks project

Lemma 48.3.6. Let f : X \to Y be a morphism of quasi-compact and quasi-separated schemes. Let a be the right adjoint to Rf_* : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Y). Let L \in D_\mathit{QCoh}(\mathcal{O}_ X) and K \in D_\mathit{QCoh}(\mathcal{O}_ Y). Then the map (48.3.5.1)

Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K)) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K)

becomes an isomorphism after applying the functor DQ_ Y : D(\mathcal{O}_ Y) \to D_\mathit{QCoh}(\mathcal{O}_ Y) discussed in Derived Categories of Schemes, Section 36.21.

Proof. The statement makes sense as DQ_ Y exists by Derived Categories of Schemes, Lemma 36.21.1. Since DQ_ Y is the right adjoint to the inclusion functor D_\mathit{QCoh}(\mathcal{O}_ Y) \to D(\mathcal{O}_ Y) to prove the lemma we have to show that for any M \in D_\mathit{QCoh}(\mathcal{O}_ Y) the map (48.3.5.1) induces an bijection

\mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K))

To see this we use the following string of equalities

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) & = \mathop{\mathrm{Hom}}\nolimits _ X(Lf^*M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(L, a(K))) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(Lf^*M \otimes _{\mathcal{O}_ X}^\mathbf {L} L, a(K)) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_*(Lf^*M \otimes _{\mathcal{O}_ X}^\mathbf {L} L), K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M \otimes _{\mathcal{O}_ Y}^\mathbf {L} Rf_*L, K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(Rf_*L, K)) \end{align*}

The first equality holds by Cohomology, Lemma 20.28.1. The second equality by Cohomology, Lemma 20.42.2. The third equality by construction of a. The fourth equality by Derived Categories of Schemes, Lemma 36.22.1 (this is the important step). The fifth by Cohomology, Lemma 20.42.2. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.