Lemma 48.15.4. Let Y be a ringed space. Let \mathcal{I} \subset \mathcal{O}_ Y be a sheaf of ideals. Set \mathcal{O}_ X = \mathcal{O}_ Y/\mathcal{I}. If \mathcal{I} is Koszul-regular (Divisors, Definition 31.20.2) then composition on R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) defines isomorphisms
\wedge ^ i(\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^1_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)) \longrightarrow \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)
for all i.
Proof.
By composition we mean the map
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \otimes _{\mathcal{O}_ Y}^\mathbf {L} R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)
of Cohomology, Lemma 20.42.5. This induces multiplication maps
\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ a_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \otimes _{\mathcal{O}_ Y} \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ b_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \longrightarrow \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^{a + b}_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)
Please compare with More on Algebra, Equation (15.63.0.1). The statement of the lemma means that the induced map
\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^1_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \otimes \ldots \otimes \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^1_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \longrightarrow \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)
factors through the wedge product and then induces an isomorphism. To see this is true we may work locally on Y. Hence we may assume that we have global sections f_1, \ldots , f_ r of \mathcal{O}_ Y which generate \mathcal{I} and which form a Koszul regular sequence. Denote
\mathcal{A} = \mathcal{O}_ Y\langle \xi _1, \ldots , \xi _ r\rangle
the sheaf of strictly commutative differential graded \mathcal{O}_ Y-algebras which is a (divided power) polynomial algebra on \xi _1, \ldots , \xi _ r in degree -1 over \mathcal{O}_ Y with differential \text{d} given by the rule \text{d}\xi _ i = f_ i. Let us denote \mathcal{A}^\bullet the underlying complex of \mathcal{O}_ Y-modules which is the Koszul complex mentioned above. Thus the canonical map \mathcal{A}^\bullet \to \mathcal{O}_ X is a quasi-isomorphism. We obtain quasi-isomorphisms
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{A}^\bullet ) \to \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ X)
by Cohomology, Lemma 20.46.9. The differentials of the latter complex are zero, and hence
\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \cong \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{A}^{-i}, \mathcal{O}_ X)
For j \in \{ 1, \ldots , r\} let \delta _ j : \mathcal{A} \to \mathcal{A} be the derivation of degree 1 with \delta _ j(\xi _ i) = \delta _{ij} (Kronecker delta). A computation shows that \delta _ j \circ \text{d} = - \text{d} \circ \delta _ j which shows that we get a morphism of complexes
\delta _ j : \mathcal{A}^\bullet \to \mathcal{A}^\bullet [1].
Whence \delta _ j defines a section of the corresponding \mathop{\mathcal{E}\! \mathit{xt}}\nolimits -sheaf. Another computation shows that \delta _1, \ldots , \delta _ r map to a basis for \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{A}^{-1}, \mathcal{O}_ X) over \mathcal{O}_ X. Since it is clear that \delta _ j \circ \delta _ j = 0 and \delta _ j \circ \delta _{j'} = - \delta _{j'} \circ \delta _ j as endomorphisms of \mathcal{A} and hence in the \mathop{\mathcal{E}\! \mathit{xt}}\nolimits -sheaves we obtain the statement that our map above factors through the exterior power. To see we get the desired isomorphism the reader checks that the elements
\delta _{j_1} \circ \ldots \circ \delta _{j_ i}
for j_1 < \ldots < j_ i map to a basis of the sheaf \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{A}^{-i}, \mathcal{O}_ X) over \mathcal{O}_ X.
\square
Comments (4)
Comment #2105 by Pieter Belmans on
Comment #2131 by Johan on
Comment #8643 by nkym on
Comment #9408 by Stacks project on