Lemma 48.15.3. Let $Y$ be a ringed space. Let $\mathcal{I} \subset \mathcal{O}_ Y$ be a sheaf of ideals. Set $\mathcal{O}_ X = \mathcal{O}_ Y/\mathcal{I}$ and $\mathcal{N} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_ X)$. There is a canonical isomorphism $c : \mathcal{N} \to \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^1_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) $.

**Proof.**
Consider the canonical short exact sequence

Let $U \subset X$ be open and let $s \in \mathcal{N}(U)$. Then we can pushout (48.15.3.1) via $s$ to get an extension $E_ s$ of $\mathcal{O}_ X|_ U$ by $\mathcal{O}_ X|_ U$. This in turn defines a section $c(s)$ of $\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^1_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)$ over $U$. See Cohomology, Lemma 20.42.1 and Derived Categories, Lemma 13.27.6. Conversely, given an extension

of $\mathcal{O}_ U$-modules, we can find an open covering $U = \bigcup U_ i$ and sections $e_ i \in \mathcal{E}(U_ i)$ mapping to $1 \in \mathcal{O}_ X(U_ i)$. Then $e_ i$ defines a map $\mathcal{O}_ Y|_{U_ i} \to \mathcal{E}|_{U_ i}$ whose kernel contains $\mathcal{I}^2$. In this way we see that $\mathcal{E}|_{U_ i}$ comes from a pushout as above. This shows that $c$ is surjective. We omit the proof of injectivity. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)