The Stacks project

Lemma 48.15.5. Let $Y$ be a ringed space. Let $\mathcal{I} \subset \mathcal{O}_ Y$ be a sheaf of ideals. Set $\mathcal{O}_ X = \mathcal{O}_ Y/\mathcal{I}$ and $\mathcal{N} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_ X)$. If $\mathcal{I}$ is Koszul-regular (Divisors, Definition 31.20.2) then

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) = \wedge ^ r \mathcal{N}[r] \]

where $r : Y \to \{ 1, 2, 3, \ldots \} $ sends $y$ to the minimal number of generators of $\mathcal{I}$ needed in a neighbourhood of $y$.

Proof. We can use Lemmas 48.15.3 and 48.15.4 to see that we have isomorphisms $\wedge ^ i\mathcal{N} \to \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X)$ for $i \geq 0$. Thus it suffices to show that the map $\mathcal{O}_ Y \to \mathcal{O}_ X$ induces an isomorphism

\[ \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ r_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) \longrightarrow \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ r_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ X) \]

and that $\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y)$ is zero for $i \not= r$. These statements are local on $Y$. Thus we may assume that we have global sections $f_1, \ldots , f_ r$ of $\mathcal{O}_ Y$ which generate $\mathcal{I}$ and which form a Koszul regular sequence. Let $\mathcal{A}^\bullet $ be the Koszul complex on $f_1, \ldots , f_ r$ as introduced in the proof of Lemma 48.15.4. Then

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(\mathcal{O}_ X, \mathcal{O}_ Y) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y) \]

by Cohomology, Lemma 20.42.9. Denote $1 \in H^0(\mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y))$ the identity map of $\mathcal{A}^0 = \mathcal{O}_ Y \to \mathcal{O}_ Y$. With $\delta _ j$ as in the proof of Lemma 48.15.4 we get an isomorphism of graded $\mathcal{O}_ Y$-modules

\[ \mathcal{O}_ Y\langle \delta _1, \ldots , \delta _ r\rangle \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y) \]

by mapping $\delta _{j_1} \ldots \delta _{j_ i}$ to $1 \circ \delta _{j_1} \circ \ldots \circ \delta _{j_ i}$ in degree $i$. Via this isomorphism the differential on the right hand side induces a differential $\text{d}$ on the left hand side. By our sign rules we have $\text{d}(1) = - \sum f_ j \delta _ j$. Since $\delta _ j : \mathcal{A}^\bullet \to \mathcal{A}^\bullet [1]$ is a morphism of complexes, it follows that

\[ \text{d}(\delta _{j_1} \ldots \delta _{j_ i}) = (- \sum f_ j \delta _ j )\delta _{j_1} \ldots \delta _{j_ i} \]

Observe that we have $\text{d} = \sum f_ j \delta _ j$ on the differential graded algebra $\mathcal{A}$. Therefore the map defined by the rule

\[ 1 \circ \delta _{j_1} \ldots \delta _{j_ i} \longmapsto (\delta _{j_1} \circ \ldots \circ \delta _{j_ i})(\xi _1 \ldots \xi _ r) \]

will define an isomorphism of complexes

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y) \longrightarrow \mathcal{A}^\bullet [-r] \]

if $r$ is odd and commuting with differentials up to sign if $r$ is even. In any case these complexes have isomorphic cohomology, which shows the desired vanishing. The isomorphism on cohomology in degree $r$ under the map

\[ \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ Y) \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{A}^\bullet , \mathcal{O}_ X) \]

also follows in a straightforward manner from this. (We observe that our choice of conventions regarding Koszul complexes does intervene in the definition of the isomorphism $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{O}_ X, \mathcal{O}_ Y) = \wedge ^ r \mathcal{N}[r]$.) $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BQZ. Beware of the difference between the letter 'O' and the digit '0'.