The Stacks project

Lemma 48.9.4. With notation as above. For $M \in D(\mathcal{O}_ Z)$ we have

\[ R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Ri_*M, K) = Ri_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Z}(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K)) \]

in $D(\mathcal{O}_ Z)$ for all $K$ in $D(\mathcal{O}_ X)$.

Proof. This is immediate from the construction of the functor $R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -)$ and the fact that if $\mathcal{K}^\bullet $ is a K-injective complex of $\mathcal{O}_ X$-modules, then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{K}^\bullet )$ is a K-injective complex of $\mathcal{O}_ Z$-modules, see Derived Categories, Lemma 13.31.9. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 48.9: Right adjoint of pushforward for closed immersions

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E2I. Beware of the difference between the letter 'O' and the digit '0'.