48.9 Right adjoint of pushforward for closed immersions
Let i : (Z, \mathcal{O}_ Z) \to (X, \mathcal{O}_ X) be a morphism of ringed spaces such that i is a homeomorphism onto a closed subset and such that i^\sharp : \mathcal{O}_ X \to i_*\mathcal{O}_ Z is surjective. (For example a closed immersion of schemes.) Let \mathcal{I} = \mathop{\mathrm{Ker}}(i^\sharp ). For a sheaf of \mathcal{O}_ X-modules \mathcal{F} the sheaf
\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, \mathcal{F})
a sheaf of \mathcal{O}_ X-modules annihilated by \mathcal{I}. Hence by Modules, Lemma 17.13.4 there is a sheaf of \mathcal{O}_ Z-modules, which we will denote \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F}), such that
i_*\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, \mathcal{F})
as \mathcal{O}_ X-modules. We spell out what this means.
Lemma 48.9.1. With notation as above. The functor \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) is a right adjoint to the functor i_* : \textit{Mod}(\mathcal{O}_ Z) \to \textit{Mod}(\mathcal{O}_ X). For V \subset Z open we have
\Gamma (V, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F})) = \{ s \in \Gamma (U, \mathcal{F}) \mid \mathcal{I}s = 0\}
where U \subset X is an open whose intersection with Z is V.
Proof.
Let \mathcal{G} be a sheaf of \mathcal{O}_ Z-modules. Then
\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{i_*\mathcal{O}_ Z}(i_*\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, \mathcal{F})) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ Z}(\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F}))
The first equality by Modules, Lemma 17.22.3 and the second by the fully faithfulness of i_*, see Modules, Lemma 17.13.4. The description of sections is left to the reader.
\square
The functor
\textit{Mod}(\mathcal{O}_ X) \longrightarrow \textit{Mod}(\mathcal{O}_ Z), \quad \mathcal{F} \longmapsto \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F})
is left exact and has a derived extension
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) : D(\mathcal{O}_ X) \to D(\mathcal{O}_ Z).
Lemma 48.9.2. With notation as above. The functor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) is the right adjoint of the functor Ri_* : D(\mathcal{O}_ Z) \to D(\mathcal{O}_ X).
Proof.
This is a consequence of the fact that i_* and \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) are adjoint functors by Lemma 48.9.1. See Derived Categories, Lemma 13.30.3.
\square
Lemma 48.9.3. With notation as above. We have
Ri_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, K)
in D(\mathcal{O}_ X) for all K in D(\mathcal{O}_ X).
Proof.
This is immediate from the construction of the functor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -).
\square
Lemma 48.9.4. With notation as above. For M \in D(\mathcal{O}_ Z) we have
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Ri_*M, K) = Ri_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Z}(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K))
in D(\mathcal{O}_ Z) for all K in D(\mathcal{O}_ X).
Proof.
This is immediate from the construction of the functor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) and the fact that if \mathcal{K}^\bullet is a K-injective complex of \mathcal{O}_ X-modules, then \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{K}^\bullet ) is a K-injective complex of \mathcal{O}_ Z-modules, see Derived Categories, Lemma 13.31.9.
\square
Lemma 48.9.5. Let i : Z \to X be a pseudo-coherent closed immersion of schemes (any closed immersion if X is locally Noetherian). Then
R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) maps D^+_\mathit{QCoh}(\mathcal{O}_ X) into D^+_\mathit{QCoh}(\mathcal{O}_ Z), and
if X = \mathop{\mathrm{Spec}}(A) and Z = \mathop{\mathrm{Spec}}(B), then the diagram
\xymatrix{ D^+(B) \ar[r] & D_\mathit{QCoh}^+(\mathcal{O}_ Z) \\ D^+(A) \ar[r] \ar[u]^{R\mathop{\mathrm{Hom}}\nolimits (B, -)} & D_\mathit{QCoh}^+(\mathcal{O}_ X) \ar[u]_{R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -)} }
is commutative.
Proof.
To explain the parenthetical remark, if X is locally Noetherian, then i is pseudo-coherent by More on Morphisms, Lemma 37.60.9.
Let K be an object of D^+_\mathit{QCoh}(\mathcal{O}_ X). To prove (1), by Morphisms, Lemma 29.4.1 it suffices to show that i_* applied to H^ n(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K)) produces a quasi-coherent module on X. By Lemma 48.9.3 this means we have to show that R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, K) is in D_\mathit{QCoh}(\mathcal{O}_ X). Since i is pseudo-coherent the sheaf \mathcal{O}_ Z is a pseudo-coherent \mathcal{O}_ X-module. Hence the result follows from Derived Categories of Schemes, Lemma 36.10.8.
Assume X = \mathop{\mathrm{Spec}}(A) and Z = \mathop{\mathrm{Spec}}(B) as in (2). Let I^\bullet be a bounded below complex of injective A-modules representing an object K of D^+(A). Then we know that R\mathop{\mathrm{Hom}}\nolimits (B, K) = \mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet ) viewed as a complex of B-modules. Choose a quasi-isomorphism
\widetilde{I^\bullet } \longrightarrow \mathcal{I}^\bullet
where \mathcal{I}^\bullet is a bounded below complex of injective \mathcal{O}_ X-modules. It follows from the description of the functor \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) in Lemma 48.9.1 that there is a map
\mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet ) \longrightarrow \Gamma (Z, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{I}^\bullet ))
Observe that \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{I}^\bullet ) represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \widetilde{K}). Applying the universal property of the \widetilde{\ } functor we obtain a map
\widetilde{\mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet )} \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \widetilde{K})
in D(\mathcal{O}_ Z). We may check that this map is an isomorphism in D(\mathcal{O}_ Z) after applying i_*. However, once we apply i_* we obtain the isomorphism of Derived Categories of Schemes, Lemma 36.10.8 via the identification of Lemma 48.9.3.
\square
Lemma 48.9.6. Let i : Z \to X be a closed immersion of schemes. Assume X is a locally Noetherian. Then R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) maps D^+_{\textit{Coh}}(\mathcal{O}_ X) into D^+_{\textit{Coh}}(\mathcal{O}_ Z).
Proof.
The question is local on X, hence we may assume that X is affine. Say X = \mathop{\mathrm{Spec}}(A) and Z = \mathop{\mathrm{Spec}}(B) with A Noetherian and A \to B surjective. In this case, we can apply Lemma 48.9.5 to translate the question into algebra. The corresponding algebra result is a consequence of Dualizing Complexes, Lemma 47.13.4.
\square
Lemma 48.9.7. Let X be a quasi-compact and quasi-separated scheme. Let i : Z \to X be a pseudo-coherent closed immersion (if X is Noetherian, then any closed immersion is pseudo-coherent). Let a : D_\mathit{QCoh}(\mathcal{O}_ X) \to D_\mathit{QCoh}(\mathcal{O}_ Z) be the right adjoint to Ri_*. Then there is a functorial isomorphism
a(K) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K)
for K \in D_\mathit{QCoh}^+(\mathcal{O}_ X).
Proof.
(The parenthetical statement follows from More on Morphisms, Lemma 37.60.9.) By Lemma 48.9.2 the functor R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) is a right adjoint to Ri_* : D(\mathcal{O}_ Z) \to D(\mathcal{O}_ X). Moreover, by Lemma 48.9.5 and Lemma 48.3.5 both R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) and a map D_\mathit{QCoh}^+(\mathcal{O}_ X) into D_\mathit{QCoh}^+(\mathcal{O}_ Z). Hence we obtain the isomorphism by uniqueness of adjoint functors.
\square
Example 48.9.8. If i : Z \to X is closed immersion of Noetherian schemes, then the diagram
\xymatrix{ i_*a(K) \ar[rr]_-{\text{Tr}_{i, K}} \ar@{=}[d] & & K \ar@{=}[d] \\ i_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K) \ar@{=}[r] & R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, K) \ar[r] & K }
is commutative for K \in D_\mathit{QCoh}^+(\mathcal{O}_ X). Here the horizontal equality sign is Lemma 48.9.3 and the lower horizontal arrow is induced by the map \mathcal{O}_ X \to i_*\mathcal{O}_ Z. The commutativity of the diagram is a consequence of Lemma 48.9.7.
Comments (2)
Comment #4849 by Weixiao Lu on
Comment #5135 by Johan on