Lemma 48.9.1. With notation as above. The functor \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) is a right adjoint to the functor i_* : \textit{Mod}(\mathcal{O}_ Z) \to \textit{Mod}(\mathcal{O}_ X). For V \subset Z open we have
\Gamma (V, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F})) = \{ s \in \Gamma (U, \mathcal{F}) \mid \mathcal{I}s = 0\}
where U \subset X is an open whose intersection with Z is V.
Proof.
Let \mathcal{G} be a sheaf of \mathcal{O}_ Z-modules. Then
\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{i_*\mathcal{O}_ Z}(i_*\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, \mathcal{F})) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ Z}(\mathcal{G}, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{F}))
The first equality by Modules, Lemma 17.22.3 and the second by the fully faithfulness of i_*, see Modules, Lemma 17.13.4. The description of sections is left to the reader.
\square
Comments (0)
There are also: