Proof.
To explain the parenthetical remark, if X is locally Noetherian, then i is pseudo-coherent by More on Morphisms, Lemma 37.60.9.
Let K be an object of D^+_\mathit{QCoh}(\mathcal{O}_ X). To prove (1), by Morphisms, Lemma 29.4.1 it suffices to show that i_* applied to H^ n(R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K)) produces a quasi-coherent module on X. By Lemma 48.9.3 this means we have to show that R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, K) is in D_\mathit{QCoh}(\mathcal{O}_ X). Since i is pseudo-coherent the sheaf \mathcal{O}_ Z is a pseudo-coherent \mathcal{O}_ X-module. Hence the result follows from Derived Categories of Schemes, Lemma 36.10.8.
Assume X = \mathop{\mathrm{Spec}}(A) and Z = \mathop{\mathrm{Spec}}(B) as in (2). Let I^\bullet be a bounded below complex of injective A-modules representing an object K of D^+(A). Then we know that R\mathop{\mathrm{Hom}}\nolimits (B, K) = \mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet ) viewed as a complex of B-modules. Choose a quasi-isomorphism
\widetilde{I^\bullet } \longrightarrow \mathcal{I}^\bullet
where \mathcal{I}^\bullet is a bounded below complex of injective \mathcal{O}_ X-modules. It follows from the description of the functor \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, -) in Lemma 48.9.1 that there is a map
\mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet ) \longrightarrow \Gamma (Z, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{I}^\bullet ))
Observe that \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \mathcal{I}^\bullet ) represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \widetilde{K}). Applying the universal property of the \widetilde{\ } functor we obtain a map
\widetilde{\mathop{\mathrm{Hom}}\nolimits _ A(B, I^\bullet )} \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, \widetilde{K})
in D(\mathcal{O}_ Z). We may check that this map is an isomorphism in D(\mathcal{O}_ Z) after applying i_*. However, once we apply i_* we obtain the isomorphism of Derived Categories of Schemes, Lemma 36.10.8 via the identification of Lemma 48.9.3.
\square
Comments (0)
There are also: