The Stacks project

Lemma 48.28.9. In Situation 48.16.1 let $f : X \to Y$ be a morphism of $\textit{FTS}_ S$. If $f$ is flat, then $f^!\mathcal{O}_ Y$ is (the first component of) a relative dualizing complex for $X$ over $Y$ in the sense of Definition 48.28.1.

Proof. By Lemma 48.17.10 we have that $f^!\mathcal{O}_ Y$ is $Y$-perfect. As $f$ is separated the diagonal $\Delta : X \to X \times _ Y X$ is a closed immersion and $\Delta _*\Delta ^!(-) = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_{X \times _ Y X}}(\mathcal{O}_ X, -)$, see Lemmas 48.9.7 and 48.9.3. Hence to finish the proof it suffices to show $\Delta ^!(L\text{pr}_1^*f^!(\mathcal{O}_ Y)) \cong \mathcal{O}_ X$ where $\text{pr}_1 : X \times _ Y X \to X$ is the first projection. We have

\[ \mathcal{O}_ X = \Delta ^! \text{pr}_1^!\mathcal{O}_ X = \Delta ^! \text{pr}_1^! L\text{pr}_2^*\mathcal{O}_ Y = \Delta ^!(L\text{pr}_1^* f^!\mathcal{O}_ Y) \]

where $\text{pr}_2 : X \times _ Y X \to X$ is the second projection and where we have used the base change isomorphism $\text{pr}_1^! \circ L\text{pr}_2^* = L\text{pr}_1^* \circ f^!$ of Lemma 48.18.1. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 48.28: Relative dualizing complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E9W. Beware of the difference between the letter 'O' and the digit '0'.