Lemma 48.18.1. In Situation 48.16.1 let
be a cartesian diagram of $\textit{FTS}_ S$ with $g$ flat. Then there is an isomorphism $L(g')^* \circ f^! \to (f')^! \circ Lg^*$ on $D_\mathit{QCoh}^+(\mathcal{O}_ Y)$.
Lemma 48.18.1. In Situation 48.16.1 let
be a cartesian diagram of $\textit{FTS}_ S$ with $g$ flat. Then there is an isomorphism $L(g')^* \circ f^! \to (f')^! \circ Lg^*$ on $D_\mathit{QCoh}^+(\mathcal{O}_ Y)$.
Proof. Namely, because $g$ is flat, for every choice of compactification $j : X \to \overline{X}$ of $X$ over $Y$ the scheme $\overline{X}$ is Tor independent of $Y'$. Denote $j' : X' \to \overline{X}'$ the base change of $j$ and $\overline{g}' : \overline{X}' \to \overline{X}$ the projection. We define the base change map as the composition
where the middle arrow is the base change map (48.5.0.1) and $a$ and $a'$ are the right adjoints to pushforward of Lemma 48.3.1 for $\overline{X} \to Y$ and $\overline{X}' \to Y'$. This construction is independent of the choice of compactification (we will formulate a precise lemma and prove it, if we ever need this result).
To finish the proof it suffices to show that the base change map $L(g')^* \circ a \to a' \circ Lg^*$ is an isomorphism on $D_\mathit{QCoh}^+(\mathcal{O}_ Y)$. By Lemma 48.4.4 formation of $a$ and $a'$ commutes with restriction to affine opens of $Y$ and $Y'$. Thus by Remark 48.6.1 we may assume that $Y$ and $Y'$ are affine. Thus the result by Lemma 48.6.2. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #5431 by CQ on
There are also: